Trajectory of the planets over the flat Earth.

The trajectory of the planets over the flat Earth.
First of all, we have to remember that, when considering the flat earth, the heliocentric model is absolutely not reliable, misleading and completely far from the truth.  Thus, just for a change, someone of the readers could imagine the geocentric model as a possible alternative.

The geocentric model in planets trajectory

As you can deduce from the side picture, planets are considered to move on concentric spheres of growing diameter.

According to this model,  the sun and the moon are directly pictured as orbiting on a flat earth. Probably this pattern, at first view, would be considered acceptable by many “flat-earthers”, but we can easily prove that the model presented in the picture is illogical and scientifically wrong.

As indicated throughout many posts in this blog and proved in many different ways,  the sun trajectory is a cone over the Earth and the orbits of this cone can be calculated at the time of the solstices. In order to reach the first approximation, these orbits can be traced by the help of trigonometry.

By using Demlo numbers and fractals we have discovered that all numbers linked to the solar disk are multiple of 111.

Here are the numbers of the cone of the sun:

Radius of the orbit

Height of the orbit

                Summer solstice 6660 6660
Winter solstice 13320

3330

The cone of planets along their trajectories

Now we have to consider the quite astonishing point that planets are always seen in the celestial hemisphere near the ecliptic, that is the trajectory of the sun in the sky.  Astronomers approach this phenomenon by saying that it happens because each planet follows an orbit moving on the same plane of the ecliptic or presenting a very small angle with respect to it. This situation should immediately appear to the observer as something totally strange. Moreover, the Newtonian gravitational theory could never explain such incredible layout of the planetary system. This, because gravity should allow the planets to rotate in very different orbits.

Now, considering the flat Earth model with the sun moving on a cone, how near to the ecliptic can a planet be seen, if it is far from the sun? If it is seen on the ecliptic when the sun is on the top of the cone, the same will be impossible when the sun will be on the bottom of it.

In the above picture, you can see the situation just described. The observer could actually see the sun and the planet on the ecliptic only once a year, proving thus this model is not correct. (I’ve represented the sun and the planet as being aligned to simplify comprehension: the basic model is that the sun and the planet on that day should follow trajectories that are running alongside).

At the sight of this picture you could think that, simply, the planet trajectory should be a cone that follows the sun during the year.

Yes, that’s true and, at first, it could be perceived as a  good idea but only up to a certain point and not at all definitely. We should have to comprehend also how far from the sun the cone of the planet should be traced. In fact, when we consider a planet on a cone far from the cone of the sun, two observers, A and B, staying in two different points of the Earth, would not be able to watch contemporarily the sun and the planet on the ecliptic.

It can thus be proved that the cone of a planet has the necessity to follow closely the cone of the sun, in order to avoid problems with parallax and to allow the observers to see the planet near the ecliptic from all the places of the Earth. Here, of course, there’s no reference to the astronomical parallax, whose unreality has been proved in a previous article, since the Earth is motionless. The parallax we are referring to is simply the different sight that two people in two different points of the Earth can have of the planet. The observer B sees the planet on the ecliptic as it should be, but, when the observer A  beholds the ecliptic, he can’t find the planet if it is not aligned. It appears thus clear that the planet can’t be far from the ecliptic.

The movement of the planets, along with their cones, has to follow the motion of the sun in relation to the height, while it can be independent of the sun in longitude. These cones must then be traced considering the fact that there are internal and external planets.  Mercury and Venus are internal, i.e. nearby the Earth, nearly inside the cone of the sun. The other planets are external, i.e. further outside the cone of the sun. In the images below you can behold the transits of Mercury and of Venus across the disk of the sun. This phenomenon drives the observer to believe that the cones of the two planets are internal, below the cone of the sun. When reading these considerations we should all be aware that things can be much more complicated than they appear.  But this is a first step that will allow, in the near future,  open-minded astronomers to make further improvements in scientific matters.

 

Mercury in front of the sun                               Venus in front of the sun

 

One comment

Leave a Reply